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Nonlinear evolution equations with non-analytic dispersion 
relations in 2 + 1 dimensions: bilocal approach 

E V Doktorov 
B I Stepanov Institute of Physics, F Skaqna Avenue 70, 220072 Minsk, Republic of Belarus 

Received 14 December 1993 

Abstract. A melhod is proposed of obtaining (2tI)-dimensional nonlinear equations with nan- 
analytic dispersion relations. Bilocal formalism is shown to make it possible to represent these 
equations in a form close to that for lheir counterpans in 1+1 dimensions. 

1. Introduction 

Nonlinear evolution equations with non-analytic (singular) dispersion relations (SDR 
equations) form an important class of equations integrable by means of the inverse spectral 
transform. The Maxwell-Bloch equations [ I ]  are the well known representative of this class 
in 1+1 dimensions. A general construction of (I+])-dimensional SDR equations solvable 
via the ZakharovShabat spectral problem was given by Leon 121. As was shown by 
Boiti et al in an interesting paper 131, the SDR equations in 2+1 dimensions possess a 
number of peculiarities, the main one being the absence of an explicit expression for the 
evolution linear operator T, = 8, - W which enters the Lax representation. Nevertheless, this 
circumstance does not prevent a construction of soliton solutions by means of the Backlund 
transformations. In particular, proposed in [3] was a (Z+l)-dimensional generalization of 
the Maxwell-Bloch equations which had a form of a rather complicated system of four 
equations. In our opinion, such a complexity was caused by the fact that the approach 
realized in [3] was primarily based on the function W given unexplicitly. In this connection, 
it is seemed to be reasonable to propose another way of deriving the above class of equations 
without making direct use of the function W. 

We will consider as a primary object a spectral transform R appearing in the framework 
of the %method [4-71. Hence, the aim of the present paper is to obtain a hierarchy of 
(2+ I)-dimensional nonlinear equations with non-analytic dispersion relations compatible 
with the linear evolution of the spectral transform R. We will demonstrate that the 
formalism developed by Beak and Coifman [8] for holomorphic dispersion relations can 
be adapted naturally for equations of interest. Our consideration relies essentially on the 
bilocal approach initiated by Konopelchenko and Dubrovsky [9] and elaborated to a full 
extent by Fokas and Santini [IO, 1 I]. It is precisely the bilocal formalism that allows us to 
generate in a natural manner (2+1)-dimensional analogues of many structures which work 
successfully in 1+1 dimensions. We will show that the form of the SDR equations in 2+1 
dimensions written in bilocal variables is very close to that for equations in 1+1 dimensions. 
In particular, the 'squared eigenfunction' structure typical for the (I+])-dimensional situation 
also takes place in 2+1 dimensions. In the process of deriving a hierarchy of equations we 
shall not use, as distinct from [lo], an extended integral representation for the function W 
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(due to the lack of an explicit expression for it). In our view, the proposed way of obtaining 
the recursion operator follows more closely the lines of 1+1 dimensions. 

In the following. we shall restrict ourselves to the consideration of the hyperbolic spectral 
problem. A derivation of the relevant formulae in the case of the elliptic spectral problem 
does not cause principal dimculties. 

2. Lax representation and the &problem 

As a starting point in a construction of nonlinear SDR equations, we consider a &problem 
on a complex plane c (3 a / a i ) :  

4 ( k )  = 1 + O(l/k) k -+ 03 

Here the matrix R (the spectral transform) is a distribution in Cz and a time dependence is 
given by the following linear evolution equation: 

@ E S L ( 2 , C )  

atR(k,  I )  = R(k,  l ) Q ( k )  - Q(I)R(k, I). (2) 

In the above equation Q ( k )  is a matrix-valued function on C called a dispersion relation. In 
a general case, Q(k)  consists of a holomorphic (polynomial) part slp(k) and a non-analytic 
(singular) part a&), i.e. $Q, # 0 in some subset of the plane C. 

Let us denote the integral in (1) as @(k)Ri F, where F is an integral operator acting on 
the left in accordance with (1). Hence., we write (1) as 

$$(k) = @ ( k ) R k F .  (3) 

A solution of the $-problem is given by a solution of the linear integral equation 

The integral operator Ck acting on the left transforms the argument k of the function in 
front of it to i and integrates with the weight (2ni)-'(I -k)-' on the whole complex plane. 
The integral operators introduced in such a way allow us to write formally a solution of the 
$-problem (3) as 

@(k) = 1 , (1 - Rb FCk)- ' .  (5 )  

A similar representation for solutions of the $-problem was effectively used by Beals and 
Coifman [8] in the case of holomorphic functions Q,(k). 

Let us define a pairing for matrix-valued functions on C: 
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where tilde stands for transpose. With respect to this pairing we have 

(@Rk F.  t/r) = (@, P& F )  

3493 

(@G P) = -(@, t/rW (6) 

where k(k. I )  = R ( l ,  k ) .  Assume, then, a parametric dependence of R(k, I) on spatial 
variables ( x ,  y) of the form 

&R(k,I) =ilu3R(k,I)-ikR(k,I)u, a,R(k,l) =i(k-I)R(k,f). (7) 

Taking as a basis the representation (3, it is shown in appendix A that the choice (7) is 
equivalent to setting the two-dimensional ZakharovShabat spectral problem 

' ~ 4  = (a, + u3a, + - ik[u3,,41= o (8) 

where a potential Q is defined as 

Q ( x ,  Y )  = -iI% (@Rk F)1 (9) 

and we denote (f, 1) = (f). 

(2) that 
Now we turn to an evolution linear problem at@ = W@ + @ R. It follows from (5) and 

@l=@81RkFCk(l -RkFCk)-' 

= (@RA F R  Ck - @ RRk FCx)(l - R k  FCx)-' 

=(@RkFRCk-@Q)(l  -RkFCk)- '+@Q 

which gives 

W@ = (@ RRx FCx - 4 R)(1 - Rk FCk)-' . (10) 

It is shown in appendix B that (10) is reduced for Qp = 0 to 

W(k)@(k)  = -+(k)G Qs(k)Ck(l - Rk FCx)-I.  

Multiplying this relation on the right by (1 - Rk FCk) and applying the %operator, we 
obtain 

a W @ + W ( @ R k F ) -  W@RkF=-@GR, 

which gives the integral equation for the function W [3]: 

$W(k) = - @ 8 Q & - ' ( k )  +//dZAdi[W(I) - W(k)l@(I)R(k,I)@-'(k). (11) 

Hence, the function W is known only to within a solution of the integral equation (1 1). 
Nevertheless, Boiti et al have shown [3] that it is possible to derive SDR equations from the 
corresponding Lax representation with the operators TI and Tz = a, - W. 

It should be noted here that (1 1) includes the inverse function @-I.  However, there is 
not, in 2 t1  dimensions (contrary to l t l ) ,  a simple equation (like (8)) for @-I. Hence, a 
problem arises of finding a natural (Ztl)-dimensional analogue of the inverse function in 
It1 dimensions. We shall show in the following section that such a function does exist and 
it permits the simplification of the SDR equations in [3]. 
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3. Hierarchy and recursion operator 

Let us calculate the evolution of the potential Q which is given explicitly by (9): 

& Q  = - i h  (&(4Rk 

The right-hand side can be transformed as follows: 

a,(@& F) = a,@& F + 4 a,& F = W@Rk F 4- $Rr FQ.  

Further calculation, due to (10). yields 

a,(@Rkk)=@RkFQCk(l -RkFCx)-'RkF-@Q(l - R ~ F C K ) - ' R ~ F + @ R X F Q  

= d R x F Q ( l - C k R i l F ) - ' - 4 Q R k F ( l - C x R k F ) - ' .  

Hence, 

a ,Q=  -i[u3,(+RkFn(l - C , R X F ) - ' , ~ ) - ( ~ ~ R ~ F ( I - C ~ R I : F ) - ' ) ]  

Taking into account properties (6) of the pairing, we get 

a ,Q=-i[u3,(@RkFQ, 1 . ( 1  + & F c k ) - I ) - ( # n ,  1 . ( l+$FCk)- '&F)] .  (12) 

Now we introduce a dual function q ( k )  by means of the relation 

p(k) = 1 . (1 + kx FCk)-'. (13) 

The %problem for the dual function has the form 

and V(k) satisfies the dual spectral problem 

a,@* + ay@*u3 - @*Q - i k [ q ,  @*I = 0. 

The derivation of (14) and (15) is given in appendix C. It is seen from (15) that only 
the dual function q is a true (2+1)-dimensional generalization of inverse functions in 1+1 
dimensions. It should be stressed that the definition (13) of the dual function arises naturally 
within the framework of the formalism based on the representation (5). 

Taking into account the above relations concerning the dual function, we write the 
evolution (12) in the form 

a,Q = -i[U3, (4Rk Fn. $) - ('$n, $kk F)1 

= -i[os, (34 ~ 4 * )  + (4 Q B ~ * ) I .  

Finally, dividing the dispersion relation into regular and singular parts, we obtain under 
condition Q,(k )  -+ 0 for k + CO: 

a& = - - i [ s ,  (3(4~,4*)) - (43 ~,4*)1. (16) 
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Assume further that 

Q,(k)  = f fnkna3 ff, =constant n = 0. 1 . .  . 

which yields 3 Q,(k) = g(k)a3. Now we introduce a bilocal object 

M ~ z ( x , y l , y z , k )  = 4 ( ~ . ~ 1 , k ) a 3 3 * ( ~ , y ~ , k )  =41a34;. 

It is easy to se that the function Mlz satisfies the equation 

a~Miz+a3a~,Miz+a*MizU3 - W u 3 , M l z l  t Q I M I Z - M I Z Q Z = O  (17) 

where Qi = Q ( x 8  yi). i = 1,2. Hence, equation (16) takes the form 

612 &Qz = -iff0S1z[m (3 (knMiz))l  t iS1z[a3. (g(k)Miz) I  (18) 

where Slz = 6(yl - yz).  Following [lo],  we introduce the notations 

P I Z M I Z  = +~3ay ,M12  t ~ * M I z U ~  Q ~ Z M I Z  = QtMi2 f M12Q2. (19) 

Let M R  and Mrz be the diagonal and off-diagonal parts of the matrix M12, respectively. 
Then (17) and (19) yield 

We can write from (20) the diagonal part as Mfz  = a3 - P i 1  Q;zM,",. Hence, equation (21) 
is written in the form (A - k)M;z = (2i)-'Qt2 . 1, where the operator A is defined as 

Then M?z = (2i)-] (A - k)-I QTz. 1 and after the expansion (A - k)-' = - 
we can write the polynomial contribution to a,Q in (18) as 

k-m A'"-' 

m 

-ia.&z[q, (8 (knM12))1 = cu,a381~ ~ ( 8 k n - m A m - ' Q : z .  1 
m=1 

i - -- a,a3 612 A" Q:, . 1 . 
- 2  

Now we have all we need to formulate a closed system of equations describing the evolution 
of the potential Q under condition o f  the linear evolution of the spectral transform R: 

i 
S I Z ~ , Q Z  = - - ~ ~ . U ~ S I Z A " Q : ~ . . . ~ +  i 8 1 z h  (g(k)Miz) l  

( P I Z M I Z - ~ ~ [ ~ , M I Z I  t Q,Miz)g(k) = O .  
2 (22) 
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Here the operator A plays the role of a recursion operator (more precisely, A is connected 
with the hue recursion operator by means of u3 [lo]). If M I ?  = 5 3  and g(k) = 0, we get 
from (22) the well known hierarchy including the Davey-Stewartson-1 equation derived by 
Santini and F o h  [lo] on the basis of an integral representation for W. 

For Qp = 0 the system (22) takes the form 

It is seen that the structure of the system (23) is similar to that for (It1)-dimensional 
Maxwell-Bloch equations ( g ( k )  - G(Imk)G(Rek -a)):  

and the system (23) is reduced to (24) in the (lt1)-dimensional limit. It should be stressed 
that, as distinct from 131, the (Ztl)-dimensional counterpart (23) of the Maxwell-Bloch 
equations demonstrates explicitly the presence of the 'squared function' term. It can be 
shown that a function r introduced in 131 is expressed, as a matter of fact, in terms of 
the above squared functions as r = is (k4 V).  Finally, for n = 2, equations (22) yield a 
(ZtI)-dimensional generalization of the equations derived in [12] in the context of nonlinear 
optics. 

4. Conclusion 

We proposed a procedure for obtaining (ZtI)-dimensional nonlinear equations with non- 
analytic dispersion relations compatible with the linear evolution of the spectral transform. 
An important step in deriving these equations was to use the representation (5) of the 8- 
problem solution. In spite of the formality of this representation, it allows us to perform 
all the needed manipulations. The introduction of the dual functions has made it possible 
to obtain the hierarchy of equations without explicit use of the second Lax operator. The 
application of the bilocal formalism was crucial for bringing these equations to a form 
similar to that for their counterparts in 1+1 dimensions. 
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Appendix A. Linear spectral problem 

We show here that the choice (7) of the dependence of R ( k )  on spatial variables x and y 
leads to the Zakharov-Shabat problem on the plane. Differentiating (5 )  with respect to x 
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we obtain ax@ = @a,Rk FCk.1 - RkFCk)-'. In virtue of the definitions of the integral 
operators F and ck and (7) we can perform the following calculation: 

dm A d i i  @ ( m )  R(1, m ) q  

64.1) 

Since we have, from (4), @Rk FCk = @ - 1, then (A.l) and the evident relation 
Rk FCk(1 - RI. FCk)-' = (1 - Rk FCk)-' - 1 yield 

ax@ = -ik@u3 - i(@ Rk F ) 9  @ + iku3(l - Rk FCk)-' . (A.2) 

Similarly, 

ay$ = ik @ + i($% F ) $  - ik (1 - Rk ~ ~ ~ 1 - l  . (A.3) 

Adding (A.2) and (A.3) yields 

a , @ + ~ ~ a ~ @ - i k [ u ~ , @ 1 - i ~ ~ 3 ~ ~ ~ R k ~ ) i ~ = o .  (A.4) 

Hence, if we identify 4 u 3 ,  (@Rk F)] = Q ( x ,  y), (A.4) gives the above spectral problem. 

Appendix B. Linear evolution problem 

In order to derive the linear evolution problem a,$ = W$ + @ Q, we calculate a,@ from (2) 
and (5). Let us take for simplicity Qp = C, whereas 
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where 

W ( k ) @ ( k ) = ( @ R k F R C k - @ s 2 ) ( 1  - R k F C k ) - ’ .  (B.1) 

Taking into account the definitions of the integral operators F and Ck, we can rewrite (B.l)  
as 

The denominator in (B.2) can be represented as 

1 1 

Then we have 

ds A dS 
@Rk FCk Q ( k )  - - // - g(s)(@Rs FcJ~73 - @ Q 

2 ~ i  s - k  
= - g(k)@(k)C73 Ck 

where, as in appendix A, we use @Rs FC, = @(s) - 1. Hence, 

W ( k ) @ ( k )  = -g(k)@(k)C73 Ck(1 - Rk FCk)-l , 

It should be noted that the calculation of &@ for QS = 0 and CZP = u2kZo3 on the basis 
of (5) leads to the well known operator Tz = a, - W for the Davey-Stewartson-1 equation 
[5,12], where a potential A of the mean flow has the form 

A = 2Q[(k(@Rk F)) - (k@Rk F )  - i(a,@Rx F)ld. 

Appendix C Dual spectral problem 

Here we give a derivation of (14) and (15). The definition (13) gives 8 = I - @& FCk 
and taking into account the evident property $ f ( k ) C k  = f ( k )  for any function f ( k ) ,  this 
yields 

Jd l  A d $ * ( L ) l ? ( k , L )  a$* = -p& F = - - -  

= - dl A df p(l)l?(l, k) = - dl A di  R(1, k )@*( l )  
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Hence, equation (14) follows. Now we find a spectral problem for the dual function @. 
Differentiatina(13) with respect to*, we find ax@ = -@a,ik F C k ( l + i r  FCk)- ' .  Taking 
into account R(k ,  1) = k(1, k), we obtain from (7) 

a,r?(k, I) = ik&, l)u3 - i i q & k ,  I) a,&, I) = -i(k - I)&. I). 

Then following the calculation in appendix A, we obtain 

and 
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